In vitro growth factor-induced bio engineering of mature articular cartilage

نویسندگان

  • Ilyas M. Khan
  • Lewis Francis
  • Peter S. Theobald
  • Stefano Perni
  • Robert D. Young
  • Polina Prokopovich
  • R. Steven Conlan
  • Charles W. Archer
چکیده

Articular cartilage maturation is the postnatal development process that adapts joint surfaces to their site-specific biomechanical demands. Maturation involves gross morphological changes that occur through a process of synchronised growth and resorption of cartilage and generally ends at sexual maturity. The inability to induce maturation in biomaterial constructs designed for cartilage repair has been cited as a major cause for their failure in producing persistent cell-based repair of joint lesions. The combination of growth factors FGF2 and TGFβ1 induces accelerated articular cartilage maturation in vitro such that many molecular and morphological characteristics of tissue maturation are observable. We hypothesised that experimental growth factor-induced maturation of immature cartilage would result in a biophysical and biochemical composition consistent with a mature phenotype. Using native immature and mature cartilage as reference, we observed that growth factor-treated immature cartilages displayed increased nano-compressive stiffness, decreased surface adhesion, decreased water content, increased collagen content and smoother surfaces, correlating with a convergence to the mature cartilage phenotype. Furthermore, increased gene expression of surface structural protein collagen type I in growth factor-treated explants compared to reference cartilages demonstrates that they are still in the dynamic phase of the postnatal developmental transition. These data provide a basis for understanding the regulation of postnatal maturation of articular cartilage and the application of growth factor-induced maturation in vitro and in vivo in order to repair and regenerate cartilage defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transforming growth factor beta superfamily members: role in cartilage modeling.

Normal and abnormal extracellular matrix turnover is thought to result, in part, from the balance in the expression of metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). The clinical manifestations of an imbalance in these relationships are evident in a variety of pathologic states, including osteoarthritis, deficient long-bone growth, rheumatoid arthritis, tumor invasion, ...

متن کامل

Orthopaedic tissue engineering: from laboratory to the clinic.

Tissue engineering involves the use of cells (either adult, mesenchymal or embryonic stem cells) coupled with biological or artificial matrices or scaffolds which guide the cells during repair or regeneration of the tissue. Recently discovered and isolated growth factors can promote either adult or stem-cell growth and differentiation along selected pathways to re-form and repair skeletal tissu...

متن کامل

Differential Immunohistochemical Expression Pattern of Galectin-3 in Normal and Osteoarthritic Human Articular Cartilage

Background: Previous studies have shown that Galectin-3, a member of lectin family, is expressed in developing cartilage in mouse embryo and also in growth plate of long bones.   Objective: In the present work, the expression pattern of Galectin-3 in normal and various grades of osteoarthritic (OA) human articular cartilage has been studied.   Methods: Using immunohistochemistry and standard we...

متن کامل

Conditional removal of the canonical TGF-β1 signaling delays condylar cartilage degeneration induced by a partial discectomy in mice

Recent emerging data indicate that the increase in the expression and activity of the transforming growth factor beta 1 (Tgf-β1) signaling may have detrimental effect to mature articular cartilage of knee joints. However, there is no information about whether or not this is the case in condylar cartilages. The objective of this study is to investigate the protein expression and activity of Tgf-...

متن کامل

Gene therapy for articular cartilage repair.

Articular cartilage serves as the gliding surface of joints. It is susceptible to damage from trauma and from degenerative diseases. Restoration of damaged articular cartilage may be achievable through the use of cell-regulatory molecules that augment the reparative activities of the cells, inhibit the cells' degradative activities, or both. A variety of such molecules have been identified. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2013